Bi-quarterly, Islamic Azad University (Maybod Branch)

Document Type : Original Article


1 Yazd University

2 Fakulti Sains Bumi


Background and objective: Agricultural lands under pistachio crop are expanded in the Bahadoran area due to the high profitability of production. Therefore, accurate estimation of pistachio water requirements and efficient use of water is essential where water resources are insufficient. This study evaluates the performance of METRIC in estimating pistachio evapotranspiration in a semi-arid region.
Materials and methods: The satellite images utilized in this study were consisting of three clouds free LANDSAT TM5 data acquired on 28 April 2010, 17 Jul 2010, and 2 Aug 2010. These images in Tagged Image File Format were downloaded from the U.S. Geological Survey Global Visualization Viewer website. Geometric correction of images was performed by collecting 20 numbers of well-dispersed ground control points. First-order polynomial transformation with nearest neighbor resampling method was applied to each image to fit the image coordinate to the coordinate of ground control points. The accuracy of the geo-referencing was evaluated by calculation of root mean square error and it was controlled to be less than half the size of the original pixel. Then two other scenes were co-registered based on this image and a subset of interest areas was generated from image scenes. Radiometric and atmospheric calibration was performed first by converting original digital numbers to radiance.
Results and conclusion: METRIC estimates the average ET for the image on April 28, July 17, and August 2 at 2.9, 4.2, and 3.1 mm per day, respectively.


Allen, R. G., Tasumi, M., Morse, A., & Trezza, R. (2005). A Landsat-based energy balance and evapotranspiration model in Western US water rights regulation and planning. Irrigation and Drainage systems19(3-4), 251-268.
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome300(9), D05109.
Allen, R. G., Tasumi, M., Morse, A., & Trezza, R. (2005). Satellite-based evapotranspiration by energy balance for western states water management. In Impacts of Global Climate Change (pp. 1-18).
Allen, R. G., Tasumi, M., & Trezza, R. (2007). Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. Journal of irrigation and drainage engineering133(4), 380-394.
Barreto, Á., Arbelo, M., Hernández-Leal, P. A., Núñez-Casillas, L., Mira, M., & Coll, C. (2010). Evaluation of surface temperature and emissivity derived from ASTER data: A case study using ground-based measurements at a volcanic site. Journal of Atmospheric and Oceanic Technology27(10), 1677-1688.
Bastiaanssen, W. G. (2000). SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of hydrology229(1-2), 87-100.
Bastiaanssen, W. G., Menenti, M., Feddes, R. A., & Holtslag, A. A. M. (1998). A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of hydrology212, 198-212.
Bastiaanssen, W. G., Molden, D. J., & Makin, I. W. (2000). Remote sensing for irrigated agriculture: examples from research and possible applications. Agricultural water management46(2), 137-155.
Brutsaert, W. (1982). Evaporation into the atmosphere: Theory. History, and Applications1.
Choi, M., Kustas, W. P., Anderson, M. C., Allen, R. G., Li, F., & Kjaersgaard, J. H. (2009). An intercomparison of three remote sensing-based surface energy balance algorithms over a corn and soybean production region (Iowa, US) during SMACEX. Agricultural and Forest Meteorology149(12), 2082-2097.
Folhes, M. T., Rennó, C. D., & Soares, J. V. (2009). Remote sensing for irrigation water management in the semi-arid Northeast of Brazil. Agricultural Water Management96(10), 1398-1408.
Rahimian, M. H., Shayannejad, M., Eslamian, S., Gheysari, M., &  Jafari, R. ( 2017). SEBAL application to estimate water use efficiency of Pistachio trees in saline condition (Case study: Bahadoran Plain, Iran). Journal. Bio. Env. Sci. 10(6), 248-257.
Gao, Y., & Long, D. (2008). Intercomparison of remote sensing‐based models for estimation of evapotranspiration and accuracy assessment based on SWAT. Hydrological Processes: An International Journal22(25), 4850-4869.
Gowda, P. H., Chavez, J. L., Colaizzi, P. D., Evett, S. R., Howell, T. A., & Tolk, J. A. (2008). ET mapping for agricultural water management: present status and challenges. Irrigation science26(3), 223-237.
Gowda, P. H., Chávez, J. L., Howell, T. A., Marek, T. H., & New, L. L. (2008). Surface energy balance based evapotranspiration mapping in the Texas high plains. Sensors8(8), 5186-5201.
Gowda, P. H., Chavez, J. L., Colaizzi, P. D., Evett, S. R., Howell, T. A., & Tolk, J. A. (2007). Remote sensing based energy balance algorithms for mapping ET: Current status and future challenges. Transactions of the ASABE50(5), 1639-1644.
Jain, S. K., Nayak, P. C., & Sudheer, K. P. (2008). Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation. Hydrological Processes: An International Journal22(13), 2225-2234.
Liaqat, U. W., & Choi, M. (2015). Surface energy fluxes in the Northeast Asia ecosystem: SEBS and METRIC models using Landsat satellite images. Agricultural and Forest Meteorology214, 60-79.
Muukkonen, P., & Heiskanen, J. (2005). Estimating biomass for boreal forests using ASTER satellite data combined with standwise forest inventory data. Remote sensing of Environment99(4), 434-447.
Mokhtari, M. H., Ahmad, B., Hoveidi, H., & Busu, I. (2013). Sensitivity analysis of METRIC–based evapotranspiration algorithm.
Norman, J. M., Kustas, W. P., & Humes, K. S. (1995). Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agricultural and Forest Meteorology77(3-4), 263-293.
Pôças, I., Paço, T. A., Cunha, M., Andrade, J. A., Silvestre, J., Sousa, A., ... & Allen, R. G. (2014). Satellite-based evapotranspiration of a super-intensive olive orchard: Application of METRIC algorithms. Biosystems Engineering128, 69-81.
Ramírez-Cuesta, J. M., Allen, R. G., Intrigliolo, D. S., Kilic, A., Robison, C. W., Trezza, R., ... & Lorite, I. J. (2020). METRIC-GIS: An advanced energy balance model for computing crop evapotranspiration in a GIS environment. Environmental Modelling & Software131, 104770.
Ramos, J. G., Cratchley, C. R., Kay, J. A., Casterad, M. A., Martínez-Cob, A., & Dominguez, R. (2009). Evaluation of satellite evapotranspiration estimates using ground-meteorological data available for the Flumen District into the Ebro Valley of NE Spain. Agricultural water management96(4), 638-652.
Reyes-González, A., Kjaersgaard, J., Trooien, T., Reta-Sánchez, D. G., Sánchez-Duarte, J. I., Preciado-Rangel, P., & Fortis-Hernández, M. (2019). Comparison of leaf area index, surface temperature, and actual evapotranspiration estimated using the METRIC model and in situ measurements. Sensors19(8), 1857.
Roerink, G. J., Su, Z., & Menenti, M. (2000). S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere25(2), 147-157.
Su, Z. (2002). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences 6(1): 85-100., 2002.
Tasumi, M. (2019). Estimating evapotranspiration using METRIC model and Landsat data for better understandings of regional hydrology in the western Urmia Lake Basin. Agricultural Water Management226, 105805.
Tasumi, M., Trezza, R., Allen, R. G., & Wright, J. L. (2005). Operational aspects of satellite-based energy balance models for irrigated crops in the semi-arid US. Irrigation and Drainage Systems19(3-4), 355-376.
Ye, X., Zhang, Q., Liu, J., Li, X., & Xu, C. Y. (2013). Distinguishing the relative impacts of climate change and human activities on variation of streamflow in the Poyang Lake catchment, China. Journal of Hydrology494, 83-95.